Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil.

نویسندگان

  • Dongliang Tian
  • Xiaofang Zhang
  • Xiao Wang
  • Jin Zhai
  • Lei Jiang
چکیده

Oil contaminated water is a common problem in the world, thus to effectively separate water and oil is an urgent task for us to resolve. By control of surface wettability of a solid substrate, both superhydrophobicity and superoleophilicity on a film can be realized, which is necessary for water and oil separation. Here we report a stable superhydrophobic and superoleophilic ZnO-coated stainless steel mesh film with special hierarchical micro/nanostructures that can be used to separate a water and oil mixture effectively. Namely, the film is superhydrophobic and water cannot penetrate the mesh film because of the large negative capillary effect, while the film is superoleophilic and liquid paraffin oil can spread out quickly and permeate the mesh film spontaneously due to the capillary effect. A detailed investigation indicates that microscale and nanoscale hierarchical structures and the appropriate size of the microscale mesh pores on the mesh films play an important role in obtaining the excellent water and oil separation property. This work provides an alternative to current separation meshes and is promising in various important applications such as separation and filtration, lab-on-a-chip devices and micro/nanofluidic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZnO nanorod array-coated mesh film for the separation of water and oil

Dense and vertically aligned ZnO nanorod arrays with a large area have been fabricated successfully on the stainless steel mesh by a simple chemical vapor deposition method. The coated mesh exhibited both superoleophilic and superhydrophobic properties, even if it was not modified by low surface energy materials. The separation efficiencies were more than 97% in the filtration of water and oil....

متن کامل

Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.

Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, w...

متن کامل

Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation.

A simple and fast method to prepare robust superhydrophobic octadecylphosphonic acid (ODPA) coating on oxidized copper mesh for self-cleaning and oil/water separation is reported here. The substrate of the copper mesh was first oxidized by simple immersion in an aqueous solution of 1.0 M NaOH and 0.05 M K2S2O8 at room temperature for 30 min, which was then covered with micro- and nanoscale Cu(O...

متن کامل

TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication i...

متن کامل

Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn(0.25)Cu(0.02)S(1.395) solid-solution: synthesis, characterization and enhanced visible light driven water splitting.

We have designed a novel semiconductor core/layer nanostructure of a uniform ZnO@TiO2 nanorod array modified with a ZnIn0.25Cu0.02S1.395 solid-solution on the surface via a facile hydrothermal synthesis. This novel nanostructure combines the merits of all components and meets the requirements of photovoltaic system application. An intimate PN heterojunction is formed from the ZnO@TiO2 nanorod a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 32  شماره 

صفحات  -

تاریخ انتشار 2011